On intersective polynomials with non-solvable Galois group
نویسندگان
چکیده
منابع مشابه
Multi-parameter Polynomials with Given Galois Group
The non-Abelian finite simple groups and their automorphism groups play a crucial role in an inductive approach to the inverse problem of Galois theory. The rigidity method (see, for example, Malle and Matzat, 1999) has proved very efficient for deducing the existence of Galois extensions with such groups, as well as for the construction of polynomials generating such extensions. Nevertheless, ...
متن کاملGalois Group Computation for Rational Polynomials
We describe methods for the computation of Galois groups of univariate polynomials over the rationals which we have implemented up to degree 15. These methods are based on Stauduhar's algorithm. All computations are done in unramiied p-adic extensions. For imprimitive groups we give an improvement using subbelds. In the primitive case we use known subgroups of the Galois group together with a c...
متن کاملOn the Galois Group of generalized Laguerre polynomials
Using the theory of Newton Polygons, we formulate a simple criterion for the Galois group of a polynomial to be “large.” For a fixed α ∈ Q−Z<0, Filaseta and Lam have shown that the nth degree Generalized Laguerre Polynomial L (α) n (x) = ∑n j=0 ( n+α n−j ) (−x)/j! is irreducible for all large enough n. We use our criterion to show that, under these conditions, the Galois group of L (α) n (x) is...
متن کاملLAGUERRE POLYNOMIALS WITH GALOIS GROUP Am FOR EACH
In 1892, D. Hilbert began what is now called Inverse Galois Theory by showing that for each positive integer m, there exists a polynomial of degree m with rational coefficients and associated Galois group Sm, the symmetric group on m letters, and there exists a polynomial of degree m with rational coefficients and associated Galois group Am, the alternating group on m letters. In the late 1920’...
متن کاملIntersective polynomials and the polynomial Szemerédi theorem
Let P = {p1, . . . , pr} ⊂ Q[n1, . . . , nm] be a family of polynomials such that pi(Z) ⊆ Z, i = 1, . . . , r. We say that the family P has the PSZ property if for any set E ⊆ Z with d∗(E) = lim supN−M→∞ |E∩[M,N−1]| N−M > 0 there exist infinitely many n ∈ Zm such that E contains a polynomial progression of the form {a, a + p1(n), . . . , a + pr(n)}. We prove that a polynomial family P = {p1, . ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Algebra
سال: 2017
ISSN: 0092-7872,1532-4125
DOI: 10.1080/00927872.2017.1385077